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The initial slope f~(q) of the time-dependent scattering function and the static structure factor S(q) of 
macromolecules in good solvents are calculated without using the Gaussian assumption. For S(q), the scaling 
relation S(q)~q- 1.7 is confirmed in the intermediate q range, whereas no q dependent cross-over behaviour 
can be observed. The calculation of Q(q) reveals a qa dependence in this range and no evidence is seen for an 
exponent apart from 3. The time-dependent scattering function S(q,t) is treated within the framework of the 
Gaussian assumption. Hydrodynamic as well as excluded volume interactions are incorporated. It has been 
found that excluded volume effects decrease the decay of the scattering function in comparison with the 
Gaussian chain. 
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INTRODUCTION 

Scattering measurements from dilute polymer solutions 
are a powerful tool for extracting important experimental 
data, which characterize the equilibrium and dynamic 
properties of a single polymer molecule. 

Quasielastic scattering experiments have become more 
and more important in recent years for studying polymer 
solution dynamics 1'2. Using laser light as the scattering 
medium it is possible to search for the dynamics of the 
polymer molecule as a whole, or, in the case of high 
molecular weight polymers, to observe the longest re- 
laxational modes of the molecule 3. Only the recently 
introduced neutron spin-echo technique 4 permits us to 
attain a momentum transfer q in the intermediate range 
(i.e. qR B > 1, where/~ denotes the radius of gyration) with 
sufficient energy resolution. In both experiments, one 
measures the static structure factor S(q), the time- 
dependent scattering function S(q,t) and its initial slope 
fl(q). Therefore, to interpret these measurements it is 
desirable to have a theory that can predict these quantities 
over the entire experimental range. 

In recent years much attention has been paid to the 
problem of excluded-volume effects in polymer solution 
physics. A particular reason for this interest was the 
discovery of the analogy between polymer physics and the 
physics of phase transitions. Using methods developed in 
this latter field a number of scaling relations have been 
established 5. However, in some cases, the experimentally 
found scaling exponents disagree somewhat with the 
theoretical exponents. There are two conflicting opinions 
to explain this: firstly, a dynamical exponent is assumed in 
addition to the static one s'6, although at present its 
existence is disputed 7. Secondly, the differences between 
experimental and theoretical exponents are explained by 
the non-uniform expansion of the polymer chain due to 
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excluded-volume effects s. These theories are summarized 
by the synonym 'blob' models 6's'9. 

In this paper, we will investigate the influence of 
excluded-volume effects, especially of the non-uniform 
chain expansion, on S(q) and f~(q) within the framework 
of the projection operator formalism. 

As opposed to the existing 'blob' theories 6's-11, which 
somewhat artificially simulate the non-uniform chain 
expansion, we employ the distribution functions of 
segment-segment distances obtained within the frame- 
work of the hierarchy equation approach 12'13. In this 
way, we may avoid the Gaussian approximation com- 
monly used in other theories and can assess its quality. 
Additionally, no free parameter need be fitted in our 
theory. 

Our results show an overall q-L71 wave-vector de- 
pendence of the static structure factor in the excluded 
volume case. No cross-over behaviour can be observed. 
The influence of excluded volume effect on the initial slope 
is much less dramatic and causes no substantial change in 
the q dependence in comparison with the Gaussian chain. 
S(q,t) will be calculated over the entire range of time 
including both hydrodynamic and excliJded volume inter- 
actions. The treatment is analogous to De Gennes and 
Dubois-ViolettC 4 regarding the time-dependent scatter- 
ing function in its Gaussian approximation. After in- 
troducing normal coordinates we get a closed expression 
for S(q,t), where only equilibrium correlation functions of 
these coordinates and their relaxation times occur. These 
quantities are calculated using the results from the theory 
of viscoelastic properties, as presented in a previous 
paper 15. 

The results of the calculation show that the decay of the 
scattering function S(q,t) of excluded volume chains is 
somewhat weaker than in the unperturbed case. The 
dominating contribution to this behaviour comes from 
the centre-of-mass diffusion, whereas the relaxation of the 
normal modes accounts mainly for the deviation from a 
simple exponential law. 
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THEORETICAL BACKGROUND 

The time evolution of a dynamical variable ak is governed 
by the following equation of motion (see e.g. ref. 16) 

~ a k  = - Lak (1) 

where the Liouvillian L for polymer molecules in dilute 
solutions is given by 17 

N-1 
L = - ~ [gradj(ln$o)Djlgrad I + Djl:divjgradJ (2) 

j , l=O 

Dj~ is the generalized diffusion tensor, which contains 
contributions from segment friction and hydrodynamic 
interaction (Oseen tensor), and fro(R0 . . . . .  /2N_ 1) repre- 
sents the equilibrium distribution of the N polymer 
segments. 

For scattering problems, the relevant dynamical vari- 
able is the spatially Fourier-transformed segment 
density ~ s 

N - 1  

pq(t) = ~ exp(t~/~j(t)) (3) 
j=0 

The summation runs over all N segments with the 
position vectors/~ in the chain. 

Then, the time-dependent scattering function 

CALCULATION DESCRIPTION 

Static structure factor S(q) and initial slope f2(q) 
Substitution of equations (2) and (3) into equation (6) 

yields1 s 

N - I  

Z (Off" exp(t~/~jl)) :~~ 

N - - 1  

Z ( exp(/'q~j/)~ 
j , l=O 

(8)  

where Rj~ is the distance vector between thejth and the lth 
segment. In order to facilitate the further calculations here 
we adopt the commonly used preaveraging approxi- 
mation of the diffusion tensor D jr. The quality of this 
approximation is discussed in detail in refs. 18, 20 and 21: 
maximum errors of about 13~ result, but no substantial 
qualitative changes in wavenumber behaviour occur. 
Equation (8) then reads 

N-- I  N 

~, ( Du) q2 + ~ ( D fl) ( exp(iqRj,)) q 2 
t2(q3 = '= o ~ = o  (9) 

N - 1  

E ( exp(i~Rj,)> 
j , l=O 

where the double sum has been split into the part over the 
diagonal elements of the diffusion tensor, i.e. 

(Du) = ks Tip (1 O) 

N - 1  

Sly,t) = (  p*(O)pq(t)} = ~ (exp{t~[/~j(t)-/~t(0)] }~ (4) 
j , l=O 

(angular brackets denote equilibrium averages) satisfies 
the following equation of motion ~ s 

t 

f K ,s)s ,t-s)ds 
0 

(5) 

which is obtained from equation (1) by the Mori pro- 
jection operator technique 18'~9. f~(~) denotes the re- 
laxation frequency or the initial slope 1°'~ of the scatter- 
ing function Sly,t). The derivation of equation (5) yields 

*L n ~ _ < P q  Pq> (6) 

where the denominator of equation (6) is the static 
structure factor 

S(q)=(p*pq) (7) 

As seen from equations (6) and (7), S(~) and Q(~) are given 
by equilibrium averages, which can be easily calculated 
(the calculation is described in the following section). 

The memory kernel Kf~,s) of equation (5) has a very 
complicated structure (because K(~,s) will not be needed 
here, we refer to ref. 18) and equation (5) seems to be 
unsuitable for the calculation of Sly,t). Therefore, a more 
approximate approach will be given in the following 
section. 

(p is the segment friction coefficient and kBT is the 
Boltzmann factor), and the off-diagional part, containing 
the hydrodynamic interaction in the preaveraged form 

kaT 
( Dj,) = ~ 1~R j,) (11) 

where % is the viscosity of the solvent. 
The problem is now reduced to the calculation of the 

averages of the exponential factor exp(i~'Rjl ) and of the 
reciprocal segment distance 1/Rjt in the presence of 
excluded volume interactions. Until now this has been 
done in the literature by expressing these averages as 
averages of the mean square segment distance 1°'11 
However, this procedure does make some assumptions, 
which only hold true in the case of Gaussian chains and 
whose quality for non-Gaussian chains cannot be appre- 
ciated at this theoretical level. 

.We have overcome this disadvantage by carrying out 
the averaging excluding these approximations using 
excluded volume distribution functions provided by a 
hierarchy equation approach. The system of hierarchy 
equations of the Fujita49kita-Norisuye type (see ref. 22) 
for the segment distance distribution functions is solved 
with the help of a self-consistent variational method. For 
a radial symmetric distribution, functions ~o(Xj~) are an 
ansatz in the form of shifted Gaussian functions as 
follows: 

1 2 2 ~bo(Xjt)dxjl = ~Xjl exp[ - (pxjl + gxjt)]dxjl (12) 

The parameters p and g, which have to be determined, are 
assumed to depend on the strength of the excluded 
volume interaction, characterized by the parameter 
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z = (3/2rib 2 ) a/2flV/~ (13) 

as well as on the reduced subchain length [l-jl/N (where C 
is the normalization factor, b the mean statistical segment 
length and fl the binary cluster integral of the segment- 
segment interaction). The reduced subchain end-to-end 
distance xjt is defined by 

x j, = R ~ , / ~  (14) 

where the index 0 denotes 0-conditions. 
In this way, a non-Gaussian, non-uniform expansion 

theory for the segment distance distribution functions was 
developed, giving good results for the equilibrium proper- 
ties of dilute solutions (expansion factors, second virial 
coefficients, concentration dependence of the expansion 
factors)~ 2. Recently, the distribution functions according 
to equation (12) were successfully used in an investigation 
into the effect of the non-uniform chain expansion on the 
dynamic viscosity also ~ 5. Working out the averages for 
1/Rj~ is a trivial task when using spherical coordinates. 
For the exponential factor exp(t~Rjt), this procedure is 
more complicated. After integration over the angular 
coordinates one gets 

oo 

(exp(~Rj,)) - C q b 4 ~  f xsin(qbx//Ij-llx) 
0 

x exp( - px z - gx)dx (15) 

with an oscillating factor in the integrand. This latter 
integration must be done numerically, since the analytical 
calculation results in complex error functions. For sim- 
plicity, we therefore abbreviate the integral in equation 
(15) by I(p,g,qbx/[j-I 1) in the  following formulae (for 
details see ref. 13). Assuming that the parameters in the 
distribution function in equation (12) depend on the 
subchain length only, the double sums in equations (9) 
and (7)can be replaced by single sums (m= IJ-l]): 

kaT 2 [- Q(q)=--~-qN[1 8aU'-2" (1 

I 
x a,.' mC J /  (16) 

f 8rcN_W S(q)=N 1+~-~ E ( 1-m'~I(p'g'qbV/-m)-I (17) 
. , . = , , - u ;  3 

In equation (16), we have introduced the expansion factor 

( t/Rit > (18) 
a~ ' - < l/Rit>o 

and a hydrodynamic interaction parameter 

a = p/(x/~btlo) (19) 

a is ~ 1 for strong hydrodynamic interactions (non-free- 
draining case) 1s'23. Equations (16) and (17) are the basis 
for the numerical calculations. 

Time-dependent scattering function S(q,t) 
The first attempt at treating this problem was carried 

out by Pecora 24, who directly solved the generalized 
diffusion equation for Gaussian chain distribution func- 
tions by characterization. Pecora's expressions for S(q,t) 
were recently reformulated and presented in a much more 
convenient form by Akcasu, Benmouna and Han 
(ABH)I t, expanding the time-dependent scattering fun- 
ction into eigenfunctions of the Liouvillian. From this, 
Han and Akcasu 2s calculated the dynamic structure 
factor S(q¢o) in a later work. Another approach to S(q,t) 
was given by Akcasu and Gurol is applying the Mori- 
Zwanzig projection operator technique 19't6 to the equa- 
tion of motion for the Fourier-transformed segment 
density pq(t) (see Theoretical background section). The 
resulting integro-differential equation (5) is exact but only 
shifts the mathematical difficulties into the evalutaion of 
the memory term K(q~,s), which cannot be overlooked even 
in the case of the Rouse model as shown by several 
authors ~6. For that reason, the projection operator 
technique appears unsuitable for the purpose of calculat- 
ing S(q,t) over the entire time range. 

As already mentioned in the introduction we invoke in 
equation (4) the so-called Gaussian assumption, which 
means that the average of the exponential is replaced by 

( exp{ ~[Rj( t ) -  R~(0)] }) = exp{ - q2/2< [xj(t) - x,(0)] 2 >} 
(20) 

In equation (20), the wave vector q is assumed to be 
parallel to the x-axis. 

This approximation, used predominantly in literature 
until now, is equivalent to the factorization of higher 
moments of the distribution function into second mo- 
ments. It is exact only for Gaussian segment distribution 
and appears, at first sight, very inexact for the case of 
excluded volume chain statistics. However, it may be 
argued from calculations of the initial slope and the static 
structure factor (see below), that this approximation does 
not lead to qualitatively wrong results and therefore we 
hope that it is also justified for our present purposes. The 
special advantage of equation (20) is exhibited in calculat- 
ing S(q,t) via equilibrium correlation functions of the 
segments' x-coordinates. Removing the square in equa- 
tion (20) and taking into account that the second moment 
(x](t)) of the equilibrium distribution function is inde- 
pendent of time we get 

( [xj( t)-  xt(0)] 2) =(x](0)) + (x2(0)> - 2<x,(t)xt(O)> (21) 

Clearly the time evolution of S(q,t) is determined by the 
correlation function (xj(t)xt(O)), whose time dependence 
can be determined using normal mode analysis. As 
appropriate normal coordinates the Rouse coordinates 
were applied; these are a good approximation even in the 
case of the excluded volume chain distribution as shown 
in the investigation of viscoelastic properties 1 s. We define 
the transformation matrix 

with 

Qjk = (2/N) 1/Zc°s~-(J + 1/2) (22) 

N - I  

x j= ~ Qjk(k (23) 
k = O  
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where ~k is the component of the kth normal coordinate 
corresponding to the x coordinate. 

Inserting equations (22) and (23) into equation (21) 
yields 

N - I  

( [xj(t)- x,(O)] 2) = }-'. ( {k~k> [Q2k + Q~k - 2QjtQ,ke - '~ ' ]  
k = O  

(24) 

In the derivation of equation (24) the normal modes relax 
as  15 

(¢k(O)~k(t)) = (~k~k) "exp( - t/zk) (25) 

The relaxation times Zk have been calculated from 
Bixon,s ~ v theory, which we extended to the case of linear 
polymer chains in ref. 15" 

Z k -- Dk (26) 

In equation (26), the average of the normal coordinates is 
given by 

1 N - 1  2" ~ k  nk 
( ~ k )  - 37Vj,~o (Rj~)cos~-q + 1/2)cos~-(/+ 1/2) 

(27) 

and D k designates the transformed elements of the 
preaveraged generalized diffusion tensor 

~ _ [  ab nk D,= , cos  ,j+ 

~:k 
c o s ~ ( / +  1/2)1 (28) 

For further evaluation of equation (25), it is preferable to 
separate the 'mode' of centre-of-mass diffusion k = 0 from 
all the others avoiding divergences in (~k~k) as well as in 
Zk" Taking into consideration equations (27) and (25) one 
finds from the limit k---~0 the expression 2Dot for the 
diffusion 'mode' and hence together with equations (20) 
and (4) the final result for the time-dependent scattering 
function is 

N - 1  ( q 2  N - 1  

S(q,t)=exp(-Doq 2t) ~ ~ k~l (~k~k) 
j , l = O  = 

x [Q2 k + Q2 k-  2Q~kQ,R exp ( -  t/Zk)]} (29) 

where D O is the familiar diffusion coefficient of Kirk- 
wood 22, which in our notation reads as 

kB T [- ab ] 
Do = ~--<-~ / 1 + ~ E ( 1 / R j , )  J lvp[_ X/ 6ztN j*l 

(30) 

In the case of Gaussian chains, equation (29) is already 
known from previous literature 11'2<27 
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RESULTS 

Static structure factor 
Some computation results of the static structure factor 

are shown in Figures 1-3. In Figure 1, the static structure 
factor is plotted double-logarithmically versus the re- 
duced wavenumber qb for a chain of 1000 segments. It is 
dear  that S(q) behaves in the intermediate range as a 
power law of the form S(q) ~ q-~. ~ has the value 2, if no 
excluded volume is present, i.e. Gaussian-chain behaviour 
(full line in Figure I). The exponent ~t alters to 1.71, if 
excluded volume effects are acting (curve for z--3 in 
Figure 1). This corresponds to the scaling results, which 
give an exponent of 1/v = 1.7 for v =0.59 in the excluded- 
volume case 1. Contradictory to the existing 'Nob' theo- 
ries 8'9 the present results exhibit no cross-over behaviour 
in the intermediate q range. 

In order to examine this further, the static structure 
factor S(q) was also calculated by using the commonly 
applied Gaussian approximation, (equation (20)). Equa- 
tion (17) then reads 

S(q)=N[l + 2~=ll(l_m~ [q 2b2 2"~-] ~/Fxpt-Tmcg,)] (31) 

where ~tj 2 is the expansion factor of the mean square 
segmental distance calculated with the help of the distri- 
bution function (12). The results are displayed in Figure 2 
in comparison with the 'exact' results for z =  1. The 
differences between these two kinds of calculation are 
about 20% at a maximum. Apart from these quantitative 
deviations, the 'approximated' curve also differs some- 
what qualitatively from the 'exact' curve in such a way 
that a q-dependent cross-over behaviour is indicated. This 
behaviour is indicated by the thin guide lines in Figure 2. 
For small q, the slope is about 0t ~ 1.7, while it tends to 
Gaussian chain behaviour for greater q ( ~  1.9). This 
behaviour was shown by the various 'blob' theories using 
the Gaussian approximation, also. Therefore it may be 
concluded that the cross-over behaviour as predicted by 
these theories may be a result of this approximation 
(equation (31)). 

v~ 

g 

- 2 -  

-3 
-2 

N = IOOO 

-I 0 
Log qb 

Figure 1 Logarithmic plot of the static structure factor versus the 
reduced wavenumber qb for various strengths of the excluded volume 
interaction:( ) : z = 0 ; (  • . ) : z = l : (  ) : z = 3  
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- I  

A r.3.. 
t~ 
r~ o 

- 2  

-3  
- 2  

- - - - ~  N = I O 0 0  

-I 0 
Log q b  

Figure 2 Comparison of the exact and the approximate calculations 
of the static structure factor: ( ), z=0; (-.-.-), z= 1, exact 
calculation from equation (17); (---), z= 1, approximate calculation 
from equation (31) 

In Figure 3, the static structure factor S(q) is plotted 
double-logarithmically versus the mean radius of gy- 
ration. The calculated curves for z = 0 and z # 0 are not 
identical because of the non-uniform chain expansion. 
Note that S(q) of an excluded-volume chain is somewhat 
larger than for a Gaussian chain. This corresponds well 
with experimental results from light scattering 28'29 and 
contradicts the theoretical prediction of Ohta, Oono and 
Freed 3° and Witten and Sch/ifer 31. The differences are 
likely to arise from the restriction to first-order e- 
perturbation theory for S(q) by these authors. 

0.5 

t3- 

0.1 

0.05 

0.01 I I I I 
0 .5  I 5 I 0  

qRg 

Figure 3 Comparison of experimental and theoretical results for S(q) in 
dependence of the reduced wavenumber qRg (Rg is the mean radius of 
gyration). Experimental data from ref. 28. ( ): z = 0; (- ): z = 1 ; ( 
• ---): z=3 

Initial slope 
The wavenumber behaviour of f~(q) for Gaussian 

chains in the free-draining and the non-free-draining cases 
is well known since the pioneering work of De Gennes and 
Dubois-Violette14: in the first case, we find a q4 de- 
pendence and a q3 one in the second. This different q 
behaviour is reflected by the lower curves (a = 1 is the non- 
free-draining case) in Figure 4. The other curves are the 
results of the excluded-volume chain calculated by equa- 
tions (16) and (17). Evidently, no significant changes of the 
slopes of the curves can be stated in the intermediate range 
for z :~ 0. The following relations are found by a regression 
analysis: 

~(q) = 0.06 kb6~3T (qb) TM for z = 1 (32a) 

f~(q) = 0.07 I~aT (qb) 3.°° for z = 3 (32b) 

There is no difference between the q dependence of f2(q) in 
the Gaussian and in the excluded-volume case. This is in 
agreement with the experimental results, where a q3 
behaviour (within the experimental errors) is always 
found 32'33. The conclusions of Daoud and Jannink 6, who 
extracted a dynamic exponent 2.85 from Q(q) measure- 
ments, must therefore once more be in some doubt. 
Furthermore, a cross-over behaviour in ~)(q) is not 
observed. Benmouna and Akcasu 1° reached the same 
conclusion in the frame of their 'blob' concept also. The 
agreement between equation (32b) and Benmouna and 
Akcasu's adequate formulae is surprisingly good. Fur- 
thermore, equation (32a) corresponds well with experim- 
ental results from quasielastic neutron scattering by Ewen 
et al. 33. Figure 4 also shows the influence of the Gaussian 
approximation (31) on the initial slope f2(q) (dotted line). 
The differences are not as high as in S(q) (about 15~o) and 
reveal no other qualitative behaviour other than the 
'exact' calculation. 

N -I 

-2 

N:,ooo / 7 /  
u ' ~  /"/ 

- -  . /" 

/ 
/ "  

/ 
I " /  -3  . . . . .  " I 

-2  -I  0 
Log qb 

Figure 4 Logarithmic plot of the initial slope versus the reduced 
wavenumber qb for various excluded volume and hydrodynamic 
interaction parameters: ( . . . . . .  -), a=z=0;  ( ), a= l ,  z=0; 
(---) ,  a = z = l ;  ( . . . . .  ), a= l ,  z=3; ( . . . .  ), a = z = l  and Gaussian 
approximation 

1216 POLYMER, 1985, Vol 26, August 



Ouasielastic scattering from 

Time-dependent scattering function 
Some results of the calculation according to equation 

(29) are shown in Figure 5: the logarithm of the norma- 
lized scattering function is plotted against the reduced 
time Qt. Calculations were performed in the free-draining 
(a=0) and the non-free-draining (a=l)  limits, respec- 
tively, likewise varying the excluded volume parameter z 
in both cases. For numerical reasons, our calculations are 
restricted to one hundred statistical segments per chain 
and therefore representative reduced wavenumbers qb 
were chosen as qb = 0.5 and 1. It can be clearly seen from 
Figure 5 and equation (29) that the shape of the scattering 
function is far from a single exponential in all cases. The 
reason is the relaxation of the normal modes. For 
Gaussian chains, this was previously shown by the 
theories of ABH 11, and Freire, de la Torre and Es- 
cudero 27 and has been confirmed by neutron spin-echo 
experiments 32'34. An exponential law is only found for 
very small (qRg,~l) and large (qb~>l) wavenumbers, 
where information is obtained from the motion of the 
whole molecule or from the statistical segments respect- 
ively. In both cases, the graph of the scattering function is 
close to the thin straight line in Figure 5, i.e. 
S(q,t) = S(q)exp( - ~(q)t). 

As can be seen from Figure 5 the time-dependent 
scattering function is clearly affected by the excluded 
volume interactions, i.e. excluded volume effects cannot 
entirely be absorbed in fl(q). For the free-draining limit 
(hypothetical for dilute solutions), the decay of S(q,t) is, in 
the excluded volume case, for small wavenumbers 
(qb ~ 0.8) weaker and for greater wavenumbers (qb ~ 0.8) 
stronger than for Gaussian chains. The reason for this 
'cross-over' is difficult to explain from equation (29). It 
may be, however, explained as an effect of the f~(q)- 
reduced representation. The differences are, in any case, 
small and of less interest. 

If the hydrodynamic interaction is included, the decay 
of the scattering function changes more dramatically than 
in the former case. This can be explained by the dominat- 
ing influence of the diffusion term (first factor in equation 
(29)) of S(q,t). Excluded volume effects cause a decrease in 

0 

-I 

-2 

- 4  - 

-5  

N = 100 

5 I0 
12t 

Figure 5 Logari thm of the normalized time-dependent scattering 
function versus the reduced time f2t for various wavenumbers  (x) ,  
qb = 0.5; (+) ,  qb = 1 ; and parameters of  hydrodynamic (O), a = 0; (0) ,  
a = 1 ; and excluded volume interaction (A), z = 0; (A), z = 3. The thin 
line designates the exponential law 
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the decay of the scattering function because the increasing 
chain dimensions due to excluded volume swelling are 
accomplished by a diminishing of the molecular centre-of- 
mass diffusion. 

SUMMARY AND CONCLUSION 

Here we have been concerned with the calculation of some 
physical quantities characterizing the scattering process 
in dilute polymer solutions above the theta temperature. 
The static structure factor is clearly influenced by 
excluded-volume effects: the wavenumber behaviour 
changes from q 2 to the scaling behaviour q-LT, but no 
wavenumber cross-over could be observed. The cross- 
over ascertained by some previous theories seems to be a 
result of the use of the Gaussian approximation. 

The initial slope ~)(q) is much less affected by excluded- 
volume effects than the static structure factor S(q). No 
significant change in the q dependence between Gaussian 
and excluded-volume chains could be found. The differ- 
ences lie within the numerical errors and allow no 
extraction of an exponent apart from 3 in the q de- 
pendence. This corresponds to the experiments. Further- 
more, from our calculations no evidence can be found for 
the existence of a dynamic exponent, because all experim- 
ental findings can be explained in full by the supposition 
of non-uniform chain expansion due to excluded-volume 
effects. Nevertheless, this question is still unsettled, but if 
such an exponent exists at all, it would be very close to 3 
and would be practically speaking indistinguishable. 

The coherent time-dependent scattering function S(q,t) 
is calculated for macromolecules in good solvents. For 
this purpose, it was necessary to use the scattering 
function in its Gaussian approximation. It may be seen 
from our calculations that excluded volume effects in- 
fluence the strength of the decay and the shape of the time- 
dependent scattering function in the C2(q)t representation 
also. The main contribution, which alters the decay of the 
scattering function compared with the Gaussian chain, 
comes from the translational diffusion term in S(q,t), 
whereas the relaxation of the normal modes is responsible 
for changes in its shape. Whether the excluded volume 
influence on S(q,t) is correctly estimated by using the 
Gaussian assumption cannot be evaluated at this 
theoretical level. We can conceive that our present work is 
a first attempt at treating the problem of excluded volume 
effects for S(q,t) and gives qualitatively correct results as 
discussed earlier in this paper. In order to clarify the 
quantitative accuracy of the theory some further experim- 
ental work seems desirable specifically in the higher Qt 
range. In this limit, however, the problem of the long-time 
diffusion coefficient as mentioned by Fixman 35 and more 
recently by Akcasu 36 must be taken into consideration by 
an improved theory. 
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